

Indian Journal of Pathology and Oncology

Journal homepage: www.ijpo.co.in

Original Research Article

Accuracy of different cytoarchitectural features in the diagnosis of papillary thyroid carcinoma by fine needle aspiration

I W G A L Malhasi^{1,*}, C S Fernando¹, MVC de Silva¹

¹Dept. of Pathology, University of Sri Jayewardenepura, Sri Lanka

PUBL

ARTICLE INFO

Article history: Received 02-10-2022 Accepted 29-11-2022 Available online 16-03-2023

Keywords: Fine needle aspiration Papillary thyroid carcinoma Cytologic

ABSTRACT

Introduction and Objectives: Fine needle aspiration (FNA) has about 90% diagnostic accuracy for papillary thyroid carcinoma (PTC) in an adequate sample. Ignorance of relative significance of individual cytologic features may lead to misdiagnosis due to reliance on a single or few features. Our objective was to determine the usefulness of individual and most appropriate combined cytologic features, for diagnosis of PTC.

Materials and Methods: H&E stained FNA smears of fifty cases each, of consecutive histologically confirmed PTC and benign thyroid cases (controls), reported over 3 years, were retrieved from the files. A total of 31 architectural, cytological and background features were assessed, blind to the final diagnosis and compared amongst the two groups. The statistical significance (p<0.05) of each parameter was determined by chi-square and odds ratio and combinations quality assessed by ROC curves.

Discussion: Twenty features were found to be statistically significant. Fourteen highly significant (p<0.000) features included flat syncytial sheets, anatomical borders, true papillae, cellular swirls, individually dispersed cells with eosinophilic cytoplasm, anisonucleosis, elongated oval nuclei, powdery chromatin, nuclear outline irregularity, thickened nuclear membranes, crescent shaped nuclei, intranuclear inclusions, histocytoid cells and soap bubble cytoplasmic vacuolation. The six statistically significant features (p<0.05) included micro-acinar structures, cellular crowding, nuclear overlapping, nuclear grooves, squamoid cells and bubble gum colloid. The control group also showed some of these single cytologic features. All the combinations of ≥ 4 features had a statistical significance of p=0.000 and specificity and PPV of 100% with ROC showing excellent results.

Conclusion: Using correct combination of cytologic features will increase accuracy of FNA diagnosis of PTC.

This is an Open Access (OA) journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprint@ipinnovative.com

1. Introduction

Thyroid carcinoma accounts for approximately 1% of all malignancies.¹ It is the commonest endocrine malignancy of which papillary thyroid carcinoma (PTC) accounting for 80% of cases in adults^{1–3} and 90% in children.³ The peak incidence in adults is between 35-40 years and is commoner in females in the ratio of 3-4:1.⁴ In Sri Lanka, thyroid gland

malignancy is the third commonest malignancy in females with the highest incidence among 15-34 years.⁴

In the evaluation of a thyroid nodule, fine needle aspiration cytology (FNAC) is a well-established first line diagnostic test.^{5–8} The diagnostic accuracy of PTC by FNA accounts for over 90% provided the sample is adequate.⁸ The accepted criteria for cytodiagnosis of PTC includes true papillary tissue fragments together with nuclear features such as dusty pale enlarged nuclei, fine dusty powdery chromatin, chromatic ridge / bar (nuclear gsingle or multiple

E-mail address: malhasig@gmail.com (I. W. G. A. L. Malhasi).

* Corresponding author.

https://doi.org/10.18231/j.ijpo.2023.004 2394-6784/© 2023 Innovative Publication, All rights reserved. micro and macronucleoli, intranuclear cytoplasmic pseudo inclusions with dense stringy 'bubble-gum' colloid in the background.⁹

None of the aforementioned architectural, cytomorphological and background features however are unique to or diagnostic of PTC as they can be present in various other non-neoplastic and neoplastic thyroid lesions such as hyperplastic nodule, papillary hyperplasia, thyroiditis, Hurthle cell neoplasm and hyalinising trabecular adenoma.^{9,10} It is challenging to distinguish reactive nuclear changes associated with lymphocytic thyroiditis from PTC since they share certain features like nuclear grooves and intranuclear inclusions.¹¹

None of these features is diagnostic on their own, unless they occur in combination and are relatively widespread.^{8,9} The commonest mistake in diagnosing PTC is when the cytopathologist places too much emphasis on a single cytological feature.⁹

Thus, unequivocal diagnosis of PTCFNA may be difficult to a inexperienced cytopathologists, when the only a few diagnostic features are present and/or if the features are the features are found in low frequency. Furthermore, variants of PTC like follicular variant may exhibit a very few nuclear features which may be present in only a few foci.¹² Therefore, it will be helpful to determine which individual cytoarchitecural features are most reliable for the diagnosis of PTC and also to determine which combination of features is more useful in the FNA diagnosis of PTC.

1.1. General objective

To determine the usefulness of individual cytoarchitectural features in FNAC smears for the diagnosis of PTC and its variants.

1.2. Specific objectives

To determine the most useful cytoarchitectural features for the diagnosis of PTC in cytology smears.

- 1. To determine the most useful cytoarchitectural features for the diagnosis of PTC in cytology smears.
- 2. To determine which combination of cytoarchitectural features is most reliable for diagnosis of papillary thyroid carcinoma in cytology smears.

2. Materials and Methods

2.1. Study design

Descriptive cross sectional study with an analytical component.

2.2. Study population and study setting

Fine needle aspiration smears from 50 consecutive histologically confirmed PTC cases, reported at the

Departments of Pathology, Faculty of Medicine Colombo and at National Hospital, Sri Lanka during the period of January 2012 to September 2015 were retrieved from the archives. FNAs from 50 consecutive histologically confirmed cases of nodular goiter, chronic autoimmune thyroiditis or hyperplastic nodules reported at the same setting during the period from January 2014 to September 2015 were also retrieved to be used as controls.

2.3. Inclusion and exclusion criteria

Haematoxylin and eosin (H and E) stained slides of each case were selected consecutively.

The slides showing extensive drying artifact and slides which were broken or poorly staining were excluded.

2.4. Sample size calculation

Sample size was calculated according to the standard formula used to calculate the proportion, taking into consideration confidence interval (CI) of 70% (55-85%) of sensitivity and confidence level at 95%.

$$n = \frac{p (1-p) x Z^{2}}{c^{2}}$$

$$n = \frac{0.7(0.3) \times 1.96^{2}}{0.15^{2}}$$

n=36 each
n= Sample size
Z = Z value (1.96 f

Z = Z value (1.96 for 95% confidence level).

p = Expected proportion in population based on previous studies

0.7 used for sample size needed

c = Confidence interval expressed as decimal (e.g., $0.15 = \pm 15$) the slides wa

According to the above formula minimum number of sample for the study is 36 in each group. Therefore, in our study we included 50 consecutive cases (papillary group) and 50 consecutive controls (non-papillary group).

2.5. Sampling technique and data collection

The cytology slides of the cases and the controls were mixed and selected randomly for the review.

The presence or absence of the following 31 architectural, cytological and background features were assessed on each H & E stained FNA smear.

2.5.1. Architectural features

- 1. Cellularity: defined by the number of cell clusters which is further divided into two groups: i. ≤20 ii. >20
- 2. Flat syncytial sheets: defined as flat sheets of follicular cells with lack of distinct cell borders.
- 3. Papillary structures with anatomical borders without fibro vascular cores: Anatomical border is defined as a well-defined sharp edge formed by a row of cuboidal or columnar cells.
- 4. True papillae with fibrovascular cores (Figure 1 A, B).

- 5. Micro acinar structures away from the sheets: defined by the micro acinar arrangement of follicular cells with well-defined lumina.
- 6. Cellular swirls: defined as concentrically organized aggregates of about 50-200 tumour cells. Majority of the peripherally situated cells have ovoid nuclei and their long axes are arranged perpendicular to the radius of the swirl (1) (Figure 1 C, D).
- 7. Individually dispersed bare nuclei.
- 8. Individually dispersed cells with eosinophilic cytoplasm (Figure 1 E).
- 9. Cellular crowding within nests and sheets: defined by overlapping of nuclei.

Fig. 1: Architectural features; **A,B**): True papillae with flat syncytial sheets (H&E x200); **C,D**): Cellular swirls (H&E x400); **E**): Individually dispersed cells with eosinophilic cytoplasm (H&E x400)

2.6. Cytological features

- 1. Anisonucleosis/Nuclear enlargement: Enlarged nucleus is defined as a nucleus > two times that of surrounding follicular epithelial cell (Figure 2 A).
- 2. Elongated, oval shaped nuclei or oblong nuclei (Figure 2 A)
- 3. Fine, powdery chromatin (Figure 2 A)
- 4. Longitudinal nuclear grooves/creases: defined as continuous groove or crease which is clearly defined (Figure 2 A).
- 5. Nuclear outline irregularity including notched nuclei (Figure 2 A)

- 6. Thickened nuclear membranes
- 7. Crescent shaped, collapsed nuclei with nuclear moulding (Figure 2 A)
- 8. Intranuclear cytoplasmic inclusions (INCI): defined as sharp, well- defined membrane like margin which is not optically clear but is similar to the colour and texture of the cytoplasm and occupies two-thirds of the nucleus.
- 9. Nucleoli: marginated and non-marginated
- 10. Histiocytoid cells: Cells with abundant and vacuolated cytoplasm and large irregular nuclei with occasional nucleoli, grainy chromatin which lack grooves and pseudo inclusions (Figure 2 B).
- 11. Cells with septate vacuoles in the cytoplasm: defined as small intracytoplasmic vacuoles which resemble soap bubbles.
- 12. Hurtheloid cells: Cells with abundant eosinophilic and finely granular cytoplasm.C
- 13. Metaplastic squamous cells: Cells with moderately abundant eosinophilic cytoplasm (Figure 2 C)s
- 14. Columnar cells: Cells with height two times more than their width showing oxyphilic featuress
- 15. Mitotic figures.

Fig. 2: Cytological features; **A):** Cellular crowding, anisonucleosis, oblong, grooved nuclei, powdery chromatin and occasional collapsed nuclei (H&E x400); **B**): Histiocytoid cells (H&E x400); **C**): Metaplastic squamous cells (H&E x400)

2.7. Background features

- 1. Bubble gum' or ropy colloid: strands and chunks of dense colloid intimately associated with the neoplastic cells.
- 2. Multinucleated giant cells

- 3. Psammoma bodies: Glassy, refractile, concentric calcified lamellated bodies
- 4. Cyst macrophages
- 5. Lymphocytes admixed with cell clusters
- 6. Plasma cells admixed with cell clusters
- 7. Neutrophils within the aspirates

For further assessment, the statistically significant cytological features were then combined into 10 groups as follows;

Combination 1: Flat syncytial sheets, true papillae, cellular swirls, anisonucleosis, elongated oval nuclei and INCI. ^{2,4,6,9,10,13}

Combination 2: Anatomical borders, true papillae, cellular swirls, elongated oval nuclei, fine powdery chromatin and crescent shaped collapsed nuclei. ^{3,4,6,10,11,14}

Combination 3: Flat syncytial sheets, true papillae, individually dispersed cells with eosinophilic cytoplasm, nuclear outline irregularity, thickened nuclear membranes and INCI. ^{2,4,8,13,15,16}

Combination 4: Anisonucleosis, fine powdery chromatin, nuclear outline irregularity, crescent shaped collapsed nuclei and INCI.^{9,11,13–15}

Combination 5: Flat syncytial sheets, True papillae, cellular swirls, Anisonucleosis, elongated oval nuclei, nuclear grooves, thickened nuclear membranes, INCI and bubble gum colloid.^{2–4,6,9,10,12,13,16}

Combination 6: True papillae and Cellular swirls.^{3,4}

Combination 7: Nuclear overlapping and Fine powdery chromatin.^{9,11}

Combination 8: Nuclear grooves an INCI.^{10,13}

Combination 9: Flat syncytial sheets and Anatomical borders.^{3,4}

Combination 10: Anisonucleosis and Nuclear grooves.^{6,10}

2.8. Statistical analysis

The presence or absence of each cytoarchitectural feature was recorded and entered in a Microsoft excel sheet. The final data was then analyzed by SSPS software (version 23). The sensitivity, specificity, positive and negative predictive values (PPV and NPV) of the selected parameters were calculated after constructing two by two tables, considering the histological diagnosis as the gold standard (Table 1). The chi-square test and odds ratio were used to determine the statistical significance (p<0.05) of each cytological parameter. If the former two methods were not applicable like in instances where one or two of the values in 2x2 table is less than 5, the Fisher's exact test was used (Table 2).

Table 1: Comparison of the presence of cytoarchitectural features of FNAC amongst the patients with papillary carcinoma and non-papillary thyroid lesions (n=100)

Characteristc	Papillary (=50)	Non- papillary	Sensitivity%	Specificity %	PPV %	NPV %
		(=50)				
Cellularity						
≤20 cells	14	20	72.00	10.001	51 501	50 001
>20 cells	36	30	12.0%	40.0%	54.5%	38.8%
Flat syncytial sheets						
Present	43	12	06.00	7600	70.00	04.401
Absent	7	38	86.0%	/6.0%	18.2%	84.4%
Anatomical borders						
Present	37	08	-			
Absent	13	42	74.0%	84.0%	82.2%	76.4%
True Papillae	-					
Present	28	0				
Absent	22	50	56.0%	100.0%	100.0%	69.4%
Microacinar structures a	way from the s	sheets				
Present	40	24				
Absent	10	26	80.0%	52.0%	62.5%	72.2%
Collular swirls	10	20				
Dresent	20	5				
Absent	2)	15	58.0%	90.0%	85.3%	68.2%
Individually disparsed b	21 oro nucloi	45				
Dresent		40				
Absont	40	49	96.0%	2.0%	49.5%	33.3%
Absent Individually disponsed of	02 alla with againg	UI nhilio ovtonlocn				
Dresont			1			
Abaant	50	0 50	72.0%	100.0%	100.0%	78.1%
Absent	14 	30				
Anisonucleosis/ nuclear (29				
Present	47	28	94.0%	44.0%	62.7%	88.0%
Absent	03	• 22				
Cellular crowding with r	iuclear overlap	ping				
Present	4/	34	94.0%	32.0%	58.0%	84.2%
Absent	03	16				
Elongated oval nuclei						
Present	47	16	94.0%	68.0%	74.6%	91.9%
Absent	03	34				
Fine powdery chromatin	l					
Present	47	08	94.0%	84.0%	85.5%	93.3%
Absent	03	42	,,	0 110 / 0		2010/0
Nuclear grooves						
Present	49	43	98.0%	14.0%	53 3%	87 5%
Absent	01	07	20.070	1 1.0 /0	55.570	07.570
Nuclear outline irregular	rity including n	otched nuclei				
Present	44	02	88.0%	96.0%	95 7%	88.9%
Absent	06	48	00.070	10.070	JJ.170	00.770
Thickened nuclear mem	branes					
Present	45	08	00.0%	84 007-	81 001-	80 40%
Absent	05	42	90.0%	04.0%	04.9%	07.4%
Crescent shaped collapse	ed nuclei with n	uclear mouldin	ıg			
Present	43	12	96 001	76.00	70 00	QA A01
Absent	07	38	00.0%	/0.0%	10.2%	04.4%

Continued on next page

Table 1 continued								
INCI								
Present	42	20	94.007	60.00	67 701	79.00		
Absent	08	30	84.0%	60.0%	07.7%	18.9%		
Nucleoli: Marginated and n	on-marginated							
Present	47	42	04.007	16.00	52.901	72 70		
Absent	03	08	94.0%	10.0%	32.8%	12.1%		
Histiocytoid cells								
Present	25	0	50.0%	100.0%	100.0%	66 70%		
Absent	25	50	30.070	100.0%	100.0%	00.7%		
Cells with septate vacuoles i	in the cytoplasm	l i						
Present	14	0	28.0%	100.0%	100.0%	58 1%		
Absent	36	50	28.070	100.0%	100.0%	36.170		
Hurtheloid cells								
Present	08	20	16.0%	60.0%	28.6%	11 7%		
Absent	42	30	10.070	00.070	28.070	41.770		
Columnar cells								
Present	03	0	6.0%	100.0%	100.0%	51.5%		
Absent	47	50	0.070	100.070	100.070	51.570		
Mitoses								
Present	06	01	12.0%	98.0%	857%	52 7%		
Absent	44	49	12.070	20.070	05.170	52.170		
Metaplastic squamous cells								
Present	06	0	12.0%	100.0%	100.0%	53.2%		
Absent	44	50	12.070	100.070	100.070	55.270		
Bubble gum or ropy colloid								
Present	24	11	48.0%	78.0%	68.6%	60%		
Absent	26	39	1010 /0	101070	001070	0070		
Multinucleated giant cells								
Present	41	38	82.0%	24.0%	51.9%	57.1%		
Absent	09	12		,	• • • • •			
Psammoma bodies		_						
Present	05	0	10.0%	100.0%	100.0%	52.6%		
Absent	45	50						
Cyst macrophages	10	27						
Present	18	27	36.0%	46.0%	40.0%	41.8%		
Absent	32	23						
Lymphocytes admixed with	cell clusters	20						
Present	46	38	92.0%	24.0%	54.8%	75.0%		
Absent	04	12						
Plasma cells admixed with o	cell clusters	2.5						
Present	36	25 25	72.0%	50.0%	59.0%	64.1%		
Absent	14	25						
Ineutrophils within the aspir	10	00						
Present	10	09 41	20.0%	82.0%	52.6%	50.6%		
Ausent	40	41						

PPV - Positive predictive value; NPV - Negative predictive value

Characteristc	Papillary (=50)	%	Non-papillary (=50)	%	Significance
Cellularity	× /				
≤ 20 cells	14	28.0%	20	40.0%	X2 = 1.604, df = 1, p = >0.05
>20 cells	36	72.0%	30	60.0%	Odds ratio 0.583 (CI 0.252—1.348)
Flat syncytial shee	ets				
Present	43	86.0%	12	24.0%	X2 = 38.828, df=1, p=0.000
Absent	7	14.0%	38	76.0%	Odds ratio 19.452 (CI 6.950 – 54.446)
Anatomical borde	rs				
Present	37	74.0%	08	16.0%	
Absent	13	26.0%	42	84.0%	
True Papillae					
Present	28	56.0%	0	0%	
Absent	22	44.0%	50	100.0%	
Microacinar struc	tures away from t	he sheets			
Present	40	80.0%	24	48.0%	X2 = 11.111, df=1, P < 0.05
Absent	10	20.0%	26	52.0%	Odds ratio 4.333 (CI 1.784—10.528)
Cellular swirls					
Present	29	58.0%	5	10.0%	X2 =25.668, df=1, P= 0.000
Absent	21	42.0%	45	90.0%	Odds ratio 12.429 (CI 4.216-36.643)
Individually disper	rsed bare nuclei				
Present	48	96.0%	49	98.0%	Two values are less than 5 hence
Absent	02	4.0%	01	2.0%	the statistical tests cannot be used for significance
Individually disper	rsed cells with eos	inophilic cy	toplasm		
Present	36	72.0%	0	0%	Fisher's exact test n=0.000
Absent	14	18.0%	50	100.0%	Fisher's exact test p=0.000
Anisonucleosis/ nu	iclear enlargemen	t			
Present	47	94.0%	28	56.0%	Eicher's constant of a 0.000
Absent	03	6.0%	22	44.0%	Fisher's exact test p=0.000
Cellular crowding	with nuclear over	rlapping			
Present	47	94.0%	34	68.0%	Eichen's and that a 10.05
Absent	03	6.0%	16	32.0%	Fisher's exact test p<0.05
Elongated oval nu	clei				
Present	47	94.0%	16	32.0%	Eicher's constant of a 0.000
Absent	03	6.0%	34	68.0%	Fisher's exact test p=0.000
Fine powdery chro	omatin				
Present	47	94.0%	08	16.0%	\mathbf{F}
Absent	03	6.0%	42	84.0%	Fisher's exact test p=0.000
Nuclear grooves					
Present	49	98.0%	43	86.0%	
Absent	01	2.0%	07	14.0%	
Nuclear outline irr	regularity includii	ng notched i	nuclei		
Present	44	88.0%	02	4.0%	
Absent	06	12.0%	48	96.0%	

 Table 2: Detection of significance of each characteristic by chi square and Fisher's exact test where applicable

Continued on next page

Table 2 continued					
Thickened nuclear men	nbranes				
Present	45	08	90.0%	84.0%	X2 =54.958, df=1, p=0.000
Absent	05	42			Odds ratio 47.250
					(CI 14.319-155.915)
Crescent shaped collap	sed nuclei v	vith nuclear mo	ulding		
Present	43	86.0%	12	24.0%	X2=38.828, df=1, p=0.000
Absent	07	14.0%	38	76.0%	Odds ratio 19.452
					(CI 6.950-54.446)
INCI					
Present	42	84.0%	20	40.0%	X2=20.543, df=1, p=0.000
Absent	08	16.0%	30	60.0%	Odds ratio 7.875
					(CI 3.063—20.247)
Nucleoli: Marginated a	and non-mai	rginated			
Present	47	94.0%	42	84.0%	Fisher's exact test p>0.05
Absent	03	6.0%	08	16.0%	
Histiocytoid cells			_		
Present	25	50.0%	0	0%	
Absent	25	50.0%	50	100.0%	
Cells with septate vacu	oles in the c	ytoplasm	_		
Present	14	28.0%	0	0%	
Absent	36	72.0%	50	100.0%	
TT (1 1 · 1 1)					
Hurtheloid cells	0.0	20	16.001	(0.00)	X2 7 1 42 16 1 0 05
Present	08	20	16.0%	60.0%	$X_2 = /.143$, dI=1, p>0.05
Adsent	42	30			Odds ratio 0.286 (CI 0.111-0.735)
Columnar cells					
Present	03	0	6.0%	100.0%	Two values are less than 5 hence
Absent	47	50	0.070	100.070	the statistical tests cannot be used
1105011	• /	20			for significance
Mitoses					
Present	06	01	12.0%	98.0%	
Absent	44	49			Fisher's exact test p>0.05
Metaplastic squamous	cells				
Present	06	0	12.0%	100.0%	
Absent	44	50			Fisher's exact test p<0.05
Bubble gum or ropy co	lloid				
Present	24	11	48.0%	78.0%	X2 =9.653, df=1, p<0.05
Absent	26	39			Odds ratio 0.260
					(CI 0.109-0.621)
Multinucleated giant co	ells				
Present	41	38	82.0%	24.0%	X2 =0.542, df=1, p>0.05
Absent	09	12			Odds ratio 1.439
Psammoma bodies					(CI 0.545-3.797)
Present	05	10.0%	0	0%	
Absent	45	90.0%	50	100.0%	
Cyst macrophages					
Present	18	36.0%	27	54.0%	X2=3.273, df=1, p>0.05
Absent	32	64.0%	23	46.0%	Odds ratio 0.479
					(CI 0.215-1.068)

Continued on next page

Table 2 continued									
Lymphocytes admix	Lymphocytes admixed with cell clusters								
Present	46	92.0%	38	76.0%	Fisher's exect test n->0.05				
Absent	04	8.0%	12	24.0%	Fisher's exact test p=>0.03				
Plasma cells admixed	d with cell clus	sters							
Present	36	72.0%	25	50.0%	X2 =5.086, df=1, p<0.05				
Absent	14	18.0%	25	50.0%	Odds ratio 2.571				
					(CI 1.122-5.895)				
Neutrophils within the	he aspirate								
Present	10	20.0%	09	18.0%	X2 =.065, df=1, p>0.05				
Absent	40	80.0%	41	82.0%	Odds ratio 1.139				
					(CI 0.419-3.097)				

Then the sensitivity, specificity, PPV and NPV of the above combinations were calculated (Table 3). The $2x^2$ table is formed in consideration of the presence or absence of all the features.

Then the combinations of the cytoarchitectural features were further analyzed by receiver operating characteristic (ROC) curves to determine the correlation of the combined features with PTC and also to conclude whether the combination of more than two features were more significant than the combination of only two features (Figure 3 and Table 4).

According to the ROC curves the results were interpreted as follows:

Area under the curve	Quality of the test
0.9-1	Excellent
0.8-0.9	Good
0.7-0.8	Fair
0.6-0.7	Poor
0.5-0.6	Fail

The cytological features were categorized according to the specificity and the PPV into the following three groups and the sensitivity of each feature was compared (Table 5).

- 1. 100% Specificity and 100% PPV
- 2. 90% Specificity and 90% PPV
- 3. 80% 90% Specificity and 80% PPV

3. Results

A total of 100 FNAs were evaluated. In the papillary group 31 cases had been diagnosed as PTC (Thy 5, Bethesda 6) whilst 19 cases had been diagnosed suspicious for PTC (Thy4, Bethesda 5). All FNA cases diagnosed as diagnostic of and suspicious for PTC were confirmed as PTC by histology. In the control group, 2 cases had been diagnosed as follicular proliferation (Thy 3). Rest of the cases were diagnosed as benign (Thy2, Bethesda 2) of which 28 cases had been diagnosed as colloid storing goiter and 20 cases as chronic autoimmune thyroiditis on cytological evaluation. The two cases diagnosed as follicular proliferation were confirmed as hyperplastic nodules by histology. The remaining 48 cases were confirmed histologically as colloid storing goiter (28 cases) or chronic autoimmune thyroiditis (20 cases).

According to the statistical analysis, the highly statistically significant (p=0.000) cytoarchitectural features are flat syncytial sheets, anatomical borders, true papillae, cellular swirls, individually dispersed cells with eosinophilic cytoplasm, anisonucleosis, elongated oval nuclei, powdery chromatin, nuclear outline irregularity, thickened nuclear membranes, crescent shaped collapsed nuclei, intranuclear inclusions, histocytoid cells and cells with soap bubble cytoplasmic vacuolation. Most of these features also had high sensitivity, specificity, PPV and NPV (>70%). However, features like true papillae, cellular swirls, histocytoid cells and cells with soap bubble cytoplasmic vacuolation had low sensitivity but very high specificity whereas features like intranuclear inclusions, anisonucleosis and elongated nuclei had high sensitivity but slightly low specificity.

The other architectural, cytological and background features which were found to be statistically significant (p<0.05) were microacinar structures away from the sheets, cellular crowding with nuclear overlapping, nuclear grooves, squamoid cells and bubble gum colloid. All these features except the latter two had high sensitivity and low specificity.

Squamoid cells and bubble gum colloid were more specific (100% and 78% respectively) than sensitive (12% and 48% respectively). Presence of plasma cells admixed with cell clusters also showed statistical significance (p<0.05) in this study with a sensitivity of 72% and a specificity of 50%. Rest of the features (cellularity, marginated and non-marginated nucleoli, mitosis, multinucleated giant cells, hurtheloid cells, cyst macrophages, lymphocytes and neutrophils within the aspirate) were statistically insignificant (p>0.05). Although psammoma bodies which are generally considered to be significant, failed to prove so in our study. The statistical studies could not be applied on two features; individually dispersed bare nuclei and columnar cells, as two of the four values were less than five. It was not possible to analyze individual cytoarchitectural parameters by ROC since the variables were categorical and not continuous.

All the combinations of more than two features were found to be statistically highly significant in differentiating between PTC and other thyroid pathologies with a statistical significance of p=0.000 with specificity and PPV of 100% in all five combinations. Combination 3 which included flat syncytial sheets, true papillae, individually dispersed cells with eosinophilic cytoplasm, nuclear outline irregularity, thickened nuclear membranes and showed 100% sensitivity and specificity.

Our study also showed that all the combinations of more than two features to be in the first category of 0.9-1 so the test quality indicated as being excellent. All the five combinations are more or less similar with the highest area under the curve to be for combination 2 which is 0.936. The ROC for combinations of only two features completely failed the test thus highlighting the importance of having more than two cytological features for the combinations to be significant.

Although the single cytological parameters could not be compared to the combination parameters in the ROC, it was shown that certain statistically significant single cytological parameters were present in some proportion in the non-papillary group as well. However, when more than

Fig. 3: ROC curves of the combination; A-J: Combination 1 -10

Characteristc	Papillary (=50)	Non- papillary (=50)	Sensitivity %	Specificity %	PPV %	NPV %	Significance
Combination 1							
Present	20	0	4007	1000	1000	(2.50)	Fisher's exact test
Absent	30	50	40%	100%	100%	02.5%	p=0.000
Combination 2							
Present	22	0	1107	1000	10007	6107	Fisher's exact test
Absent	28	50	44%	100%	100%	04%	p=0.000
Combination 3							
Present	25	0	1000	1000	1000	((())	Fisher's exact test
Absent	25	50	100%	100%	100%	00.0%	p=0.000
Combination 4							
Present	40	0	900	1000	1000	82.20	Fisher's exact test
Absent	10	50	80%	100%	100%	83.3%	p=0.000
Combination 5							
Present	41	0	18%	100%	100%	54.9%	Fisher's exact test
Absent	09	50					p=0.000

 Table 3: Calculating sensitivity, specificity, PPV, NPV and significance of combinations of statistically important selected

 cytoarchitectural features

CI - Confidence interval

Table 4: ROC of the combinations: area under the curve

Combination	1	Standard amon ^a	Asymptotic	Asymptotic 95% confidence interval		
Compiliation	Area	Standard error	significance ^b	Lower bound	Upper bound	
1	0.924	0.032	0.000	0.862	0.987	
2	0.936	0.028	0.000	0.861	0.990	
3	0.932	0.033	0.000	0.869	0.996	
4	0.933	0.031	0.000	0.873	0.993	
5	0.917	0.033	0.000	0.853	0.982	
6	0.182	-	-	_	-	
7	0.188	-	-	_	-	
8	0.268	_	_	-	-	
9	0.165	-	-	-	_	
10	0.301	-	_	-	-	

Thetest result variable(s): Total 2 has at least one tie between the positiveactual state group and the negative actual state group. Statistics may bebiased. a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5

two statistically significant cytoarchitectural features were combined, all had 100% specificity and none were present in the non-papillary group as a total. This signifies the use of combination of cytoarchitectural features in the diagnosis of PTC on FNA.

As indicated in Table 5, many individual cytological features with 100% specificity and 100% PPV {except for individually dispersed cells with eosinophilic cytoplasm (72%) and true papillae (56%)} had sensitivity of 50% or less. This highlights the problem in cytological diagnosis of PTC, where individual cytological features with a high specificity and positive predictive value may not always be reliable due to low sensitivity. Nuclear outline irregularity in the category of 90% specificity and 90% PPV also had a high sensitivity (88%). In the category of 80-90% specificity and 80% PPV, most of the features had a high sensitivity except for the mitoses (12%).

4. Discussion

The main aim of our study was to determine the usefulness of individual cytoarchitectural features in FNA smears for the diagnosis of PTC and its variants and to further determine not only the most useful cytoarchitectural features but also the most reliable combination of cytoarchitectural features for the diagnosis of PTC in cytology smears.

The rationale behind this was that in spite of the welldefined cytological features described in numerous studies the diagnosis of PTC on cytology is often quite difficult and as of date, there has been no international standard which exists for the cytological diagnosis of PTC.

Twenty out of the 31 cytological parameters analyzed in our study were found to be statistically significant in the diagnosis of PTC when compared to the control group.

Table 5: C	ategorization of	cytologic features	according to the s	pecificity and t	he PPV. 100% S	specificity and 100% PPV
	0	2 0	0			

100% Specificity and 100% PPV	
Characteristics	Sensitivity %
Individually dispersed cells with eosinophilic cytoplasm	72
True Papillae	56
Histiocytoid cells	50
Cells with septate vacuoles in the cytoplasm	28
Metaplastic squamous cells	12
Psammoma bodies	10
Columnar cells	6
90% Specificity and 90% PPV	
Characteristics	Sensitivity %
Nuclear outline Irregularity	88
80-90% Specificity and 80% PPV	
Characteristics	Sensitivity %
Fine powdery chromatin	94
Thickened nuclear membranes	90
Anatomical borders	74
Cellular swirls	58
Mitoses	12

Of these, 14 features had a significance of p=0.000 whilst six features had a significance of p<0.05. The 14 features included flat syncytial sheets, anatomical borders, true papillae, cellular swirls, individual cells with eosinophilic cytoplasm, anisonucleosis, elongated oval nuclei, fine powdery chromatin, nuclear outline irregularity, thickened nuclear membranes, crescent shaped collapsed nuclei with or without nuclear moulding, INCI, histiocytoid cells and cells with septate vacuolation. There was a significant correlation between the histologic diagnosis of PTC and the cytological findings mentioned above.

However, when the statistically significant cytoarchitectural features were combined, all the five combinations of more than four features had 100% specificity and none of the features when combined were all present in the non-papillary group. According to the ROC, combination of more than four cytological features was more significant than combining two features. Conclusion

This study signifies the importance of the use of combination of a larger number of cytoarchitectural features in the diagnosis of PTC on FNA. Further recommendation is to include a larger study group to devise a scoring system which can then be applied to classify the FNA as diagnostic for PTC.

5. Source of Funding

None.

6. Conflict of Interest

None.

References

- Szporn AH, Yuan S, Maoxin WU, Burstein DE. Cellular swirls in fine needle aspirates of papillary thyroid carcinoma: a new diagnostic criterion. *Mod Pathol*. 2006;19(11):1470–3.
- [2] Jain A, Alam K, Maheshwari V, Rabindranath D, Khan AA, Khan R. Cytological features in the early diagnosis of papillary carcinoma of thyroid in clinically inapparent cases. *Ann Pathol Lab Med.* 2015;2(3):94–7.
- [3] Sidaway MK. Ali SZ Fine needle aspiration cytology. 1st ed. Philadelphia: Elsevier; 2007. p. 37–70.
- [4] Cancer Incidence Data. Colombo, Sri Lanka: National Cancer Control Programme; 2007. Available from: https://www.nccp.health. gov.lk/en/incedenceData.
- [5] Rajesh SP, Rashmi KP, Andola SK, Viral L, Mallikarjun B. Efficacy of fine needle aspiration cytology in diagnosis of lesions of thyroid and histopathological correlation. *J Pub Health Med res.* 2013;1(1):18–23.
- [6] Tabaqchali MA, Hanson JW, Johnson SJ, Wadehra V, Lennard TWJ, Proud G. Thyroid aspiration cytology in Newcastle: a six year cytology/histology correlation study. *Ann R Coll Surg Engl.* 2000;82(3):149–55.
- [7] Hisham ETS, Abdelelah ME. The diagnostic value of fine needle aspiration cytology of thyroid nodules. *Kasr EL Aini J Surg.* 2006;7(1):69–77.
- [8] Mittal A, Ahmad F, Dutta S, Nizammudin S, Awasthi S, Kumar A. Use and accuracy of fine needle aspiration cytology in thyroid lesion: Our Experience in a tertiary teaching hospital in North India. *Int J Sci Study*. 2015;3(2):95–100.
- [9] Pandey P, Dixit A, Mahajan NC. Fine needle aspiration of the thyroid: A cytohistologic correlation with critical evaluation of discordant cases. *Thyroid Res Pract*. 2012;9:32–9.
- [10] Das DK, Sharma PN. Diagnosis of papillary thyroid carcinoma in fine needle aspiration smears. *Acta Cytologica*. 2009;53(5):497–506.
- [11] Baloch ZW, Livolsi VA. Cytologic and architectural mimics of papillary thyroid carcinoma. *Am J Clin Pathol.* 2006;125(suppl 1):135–44.
- [12] Renshaw AA. Focal features of papillary carcinoma of the thyroid in fine needle aspiration material are strongly associated with papillary carcinoma at resection. *Am J Clin Pathol*. 2001;118(2):208–10.
- [13] Das DK, Mallik MK, Haji BE, Ahmed MS, Al-Shama'a M. Psammoma body and its precursors in papillary thyroid carcinoma: A study by fine needle aspiration cytology. *Diagn Cytopathol.* 2004;31(6):380–10.

- [14] Das DK. Intranuclear cytoplasmic inclusions in fine needle aspiration smears of papillary thyroid carcinoma: a study of its morphological forms, association with nuclear grooves and mode of formation. *Diagn Cytopathol.* 2005;32(5):264–8.
- [15] Yang YJ, Demirci SS. Evaluating the diagnostic significance of nuclear grooves in thyroid fine needle aspirates with a semi quantitative approach. *Acta Cytol*. 2003;47(4):563–70.
- [16] Renshaw AA. "Histiocytoid" cells in fine-needle aspirations of papillary carcinoma of the thyroid: frequency and significance of an under-recognized cytologic pattern. *Cancer*. 2002;96(4):240–3.

Author biography

I W G A L Malhasi, Senior Registrar and Lecturer in Pathology

C S Fernando, Consultant Histopathologist and Senior Lecturer in Pathology

MVC de Silva, Consultant Histopathologist and Senior Professor in Pathology

Cite this article: Malhasi IWGAL, Fernando CS, de Silva MVC. Accuracy of different cytoarchitectural features in the diagnosis of papillary thyroid carcinoma by fine needle aspiration. *Indian J Pathol Oncol* 2023;10(1):15-28.